I. Introductions

- a. We will cover in this presentation
 - i. Aircraft electrical installation
 - ii. Materials
 - iii. Tools
 - iv. Techniques
 - v. Recommended practices

II. Qualifier

- a. For the Lawyers among us
 - i. Information discussed here does not supersede or replace government regulations or specifications or the manufacturers' instructions

III. AC 43.13-2B

- a. FAA Advisory Circular Publication documenting recommended techniques for aircraft maintenance and repair
 - i. It is an advisory circular not a rule
 - ii. Paragraph 11 and 12 deal with Electrical and Avionics
- b. How to get it
 - i. You can download it free from the FAA (<u>www.faa.gov</u>) use "quick find" search for "advisory circulars" then "AC 43.13-2B"
 - ii. NOTE: It is a "PDF" file so you will need Adobe Reader(www.adobe.com/products/acrobat/readstep2.html) if you don't already have it.
 - iii. If you download it you will not want to print the whole document, it is several hundred pages long
 - iv. Or you can buy a hard copy from most aviation book sellers or pilot shops

IV. Wire

- a. Auto and Marine vs. Aircraft wire
 - i. Auto wire
 - 1. Is not usually "tinned" or plated with a corrosion resistant coating like tin, nickel or silver
 - 2. Wire made for automobile applications often has PVC or vinyl insulation which will burn and produce poisonous fumes
 - ii. Marine wire
 - 1. Good quality Marine wire is often tinned but often uses PVC insulation

- iii. Mil spec 5086A Wire (See Picture #1)
 - 1. Relatively thick PVC insulation
 - 2. Finely stranded
 - 3. Found in most aircraft produced until the late 1970's
 - 4. PVC insulation produces Cyanide when it burns and will support combustion
- iv. Mil spec.22759 Wire (See Picture #2)
 - 1. Marking MIL-22759/ (number) (wire gauge)
 - 2. Teflon or Tefzel insulation
 - 3. Will not support combustion and does not generate poisonous fumes when exposed to flame
 - 4. Is always finely stranded
 - 5. Is always tinned with tin, nickel or silver making it highly corrosion resistant
 - 6. Table 11.11 Open Wiring in 43.13 page Par. 11-89 page 11-40 (See Page 11)
- v. Kapton Wire (See Picture #3)
 - 1. BAD NEWS DO NOT USE!
 - 2. Plentiful and cheap on the surplus market because it is being removed from commercial and military aircraft as fast as they can economically get it out.
 - 3. Cracks rapidly with age and burns like primercord when it gets lit
 - 4. Several air carrier and military inflight fires and crashes have been traced to Kapton wire

V. Wire Stripping Tools

- a. Knife or Chisel type (See Picture #4)
 - i. Make a good tack hammer
 - ii. Extremely easy to damage wire
- b. "Ring Die" type (See Picture #5)
 - i. Ideal Tool Co. "Stripmaster" or "Custom Stripmaster"
 - ii. "Ring Die" type come in several varieties
 - iii. Be careful of the surplus strippers designed for Kapton wire
 - iv. The relief for the insulation is smaller because of the thinner insulation on Kapton wire and will not work well on 22759 wire
 - v. The dies are changeable in Stripmasters

VI. Terminating and Splicing

- a. Crimping vs. Soldering
 - i. Solid wire is highly susceptible to damage from vibration
 - ii. Houses do not vibrate (much), this is why house wiring is solid or has very large strands
 - iii. Aircraft wire is very finely stranded to make it vibration damage resistant
 - iv. Soldering makes it a solid wire for an indeterminate distance beyond the soldered joint or terminal
 - v. A termination using the correct type of crimp terminal crimped with the correct crimper is the most reliable and longest lasting connection for a wire in an aircraft application
- b. Crimp Terminals Automotive vs. Aircraft (See Picture #6)

Crimp terminals for auto use	Crimp terminals for aircraft use
Amp calls them "Plastigrip"	Amp calls them "Pre Insulated Diamond Grip" or PIDG
Use Vinyl insulation	Always use Nylon insulation
Do not have a metal insulation grip	Have a metal sleeve for insulation grip
Do not have a brazed barrel for the wire grip	Have a brazed barrel for the wire grip

VII. Crimping Tools (See Picture #7)

- a. Crimp depth is important so the wire isn't damaged in the crimping process
- b. "Tack hammers" do not give predictable crimp depth and crimp one grip area at a time
- c. The wire grip and insulation grip must both be crimped at the same time for a proper termination
- d. Ratcheting dual die crimpers give a predictable crimp depth and crimp both the insulation grip and the wire grip at the same time to the correct depth

VIII. Coaxial Cable

- a. RG-58/(letter) (See Picture #8)
 - i. Has black PVC insulation, stranded inner conductor with clear nylon or polyethylene insulation
 - ii. Cheaper versions of this cable (CB Cable) are not 'tinned" and have a bare copper outer braid and are highly susceptible to corrosion
 - iii. Is fine cable other than the "PVC burning thing" until it gets about 5 to 7 years old
 - iv. Gets brittle with age and begins cracking and absorbing moisture
 - v. Coaxial cable is used in systems where constant impedance for the length of the cable is vital. When it absorbs moisture it changes the impedance of the cable
- b. RG-400 cable (See Picture #9)
 - i. RG 58 has been superseded by RG 400 which is a much higher performance cable
 - ii. Has translucent gold colored Teflon insulation, silver tinned double outer braid and stranded tinned inner conductor with Teflon insulation
 - iii. Silver tinned outer braid and inner conductor make RG 400 highly corrosion resistant
 - iv. Does not become brittle or crack with age due to Teflon insulation
 - v. Is slightly more expensive but very much worth it for airborne applications
- c. Coaxial Cable Termination
 - i. All connectors made for RG 58 will fit RG 400.
 - ii. Crimp connectors are the preferred connectors for our aircraft applications
 - iii. Crimps are easier to attach properly and are more vibration resistant than "clamp type"
 - iv. A good quality crimper for these connectors can be purchased for less than \$25
 - v. Buy some extra connectors and cable, you will need to practice
 - vi. Most good quality connectors (Amphenol) have a stripping dimension diagram on the package (See Picture #10)
 - vii. The hole in the center pin is NOT for soldering in a crimp type connector it is a view hole to verify that the center conductor is bottomed in the pin

IX. Wire Support & Securing

- a. Ty Wraps
 - i. Come in many varieties not all of which are appropriate for aircraft use
 - ii. Vinyl vs Nylon and telling the difference
 - iii. Metal tab vs plastic tab
 - iv. Limitations in high heat areas
 - v. Minimize blood loss, use flush cutting side cutters to cut off the tails
- b. Lacing Cord
 - i. Better than Ty Wraps because it is easier on the wire.
 - ii. Comes in several varieties, waxed, unwaxed, nomex for hot areas etc
 - iii. Bundle lacing shown in AC 43.13 is good but has drawbacks when maintenance or modification is required it all comes unraveled!
 - iv. The skilled technicians at NASA have a better way this knot as been used on military aircraft and spacecraft for many years
 - v. (See Picture # 11) Here is the knot on the wiring bundles on a Gemini space capsule, the entire wiring harness on the capsule is tied up with this knot

vi. The knot I am going to show you takes the place of individual Ty Wraps (See Picture #12)

c. Clamps

- i. Adel Clamps MS 2919-XX-X
- ii. http://www.aeroelectric.com/articles/adel.html (See Page 12 of 13)
- iii. General Color code: black or darker color is for cool and/or less chemically threatening areas and red, orange or yellow is for hot and/or more chemically threatening areas
- iv. Nylon Clamps not for hot areas
- v. Same caution applies as for nylon and vinyl Ty Wraps
- vi. Spacing

X. Wire Bundle Routing

- a. Separate Noisy Bundles from Quiet ones
 - i. Route high current (flap and landing gear motors, landing lights, starters etc.) or noise producing (strobes) circuits as far as possible away from instrumentation, audio and data circuits
 - ii. Six inches is good but farther is better
- b. Crossing Angle
 - i. If you have to cross an audio, instrumentation or data cable with a high current or noisy circuit do it at 90 degrees
 - ii. This minimizes the electrical coupling between the two circuits

XI. Wire Protection

- a. Strain relief and environmental protection
 - i. Heat shrink tubing is great but has some limitations
 - ii. Regular heat shrink can actually trap moisture under it
 - iii. Special types of heat shrink are available with gel inside to make it waterproof
 - iv. Most inexpensive heat shrink is PVC which can burn and make cyanide gas
 - v. Heat shrink specifically for aircraft use is made from Polyolefin
 - vi. Protect sharp edges with chafe protection (See Picture #13)
 - vii. Give yourself service loops at the ends of wires

XII. Wire Marking

- a. Do yourself a favor, mark everything so you can find it later
- b. Mark both ends of a circuit and if it is a long one every 3 or so feet along the way if it is accessible
- c. White heat shrink with lettering by ball point pen or fine point sharpie works great
- d. Clear heat shrink with paper underneath for marking is also slick way to do this

XIII. THE END

a. That's all Folks!

Come on up and try what I just showed you